
Patterns in Nature

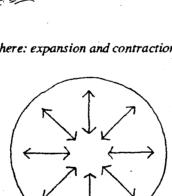
▲arian Farrior

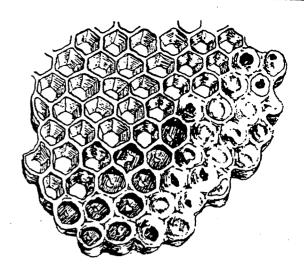
The permaculture principle of observing and replicating patterns in nature can become a fascinating study—and a life-long one. Here is a short outline of the primary patterns that occur in nature. These patterns are about forms in space; timing and rhythms influence them as well. but as my observations are part of a life-long study, I have not yet had enough opportunity to research the time dimension!

This synopsis follows the outline from Peter Boyle's wonderful book. Patterns in Nature (see references), with a few additions.

Sphere: expansion and contraction

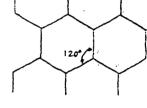
Pattern of Perfection


Shapes: Sphere, Hemisphere,


Purpose or Function: The sphere is a balance between expansive and contractive, outward and inner forces. Spheres provide the least amount of surface area for the most volume; this shape minimizes heat

Examples in Nature: Planets, stars, drops of water, radiolarians, volvox algae, diatoms, eyes, eggs, seeds,

cherries, crabapples, squash, pumpkins, breadfruit. Associated Mathematical Terms: Volume = $4/3 \text{ r}^3$: Surface area = 4 r^2 Examples in Garden and Permaculture Design: circle gardens, solar umbrellas, geodesic domes.


Illustrations by Lisa Wittrup

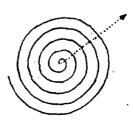
Patterns of Packing & Cracking

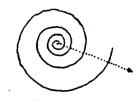
Shapes: Polygon, Nets Purpose or Function: Threeway joints with shared partitions minimize surface area required to enclose the same amount of volume. This shape saves space, material, energy, and creates the shortest path (besides a line); it also provides a rigid structure.

Hexagon: 120°

Examples in Nature: soap bubbles, ice crystals, honey-

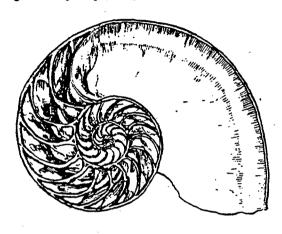
combs, com kernels, turtle shells, snake skin scales, basalt columns, cilia struts, bird bones, network of veins in plants. Associated Mathematical Terms: hexagon: 120° angles Examples in Garden and Permaculture Design: hexagonal spacing of plants in Biodynamic systems; triangular spacing of seeds or plants; storage


Patterns of Growth


Shapes: Spiral, Helix

Purpose or Function: Spirals add size without changing the shape. They uniformly fill a space and maximize the amount of material within it. The ability to contract like a spring adds length without adding width. "Spirals are found where harmonic flow, compact form, efficient array, increased exchange, transport, or anchoring is needed" (Mollison, p. 83).

Examples in Nature: spider web, mollusk shells, sea shells, horns, composite florets, cacti, fern fronds, vine


Logarithmic spiral

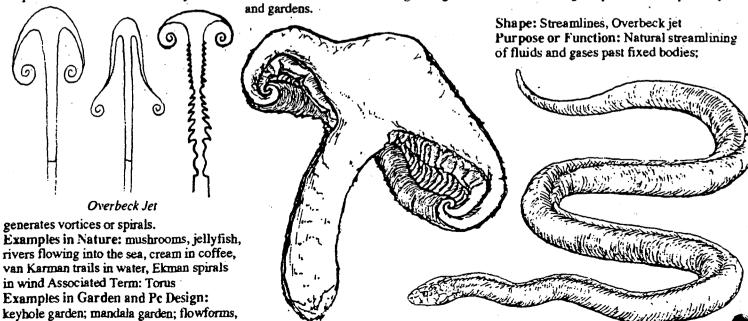
Archimediean spiral

tendrils, pine cones, pineapple, eddies, hurricanes, convection currents, sunspots, planetary orbits, galaxies, DNA. Associated Mathematical Terms: The Archimedes spiral maintains a constant distance between coils and increases arithmetically (see picture). The logarithmic spiral (also called equiangular or proportional spiral) increases geometrically, usually by the number $\phi = 1.61803...$, where $\phi = \phi^2$ - 1. Phi (Φ), or the proportion 1.61803:1, is called the Golden Mean or Golden Ratio. Phi (ϕ) is approximated by the ratio of each number in the Fibonacci series of integers to the previous number, where each number in the series is defined as the sum of the preceding two numbers, i.e., 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, etc. The ratio of F_{1s}/F_{1s} in this series is 1.618032786. Examples in Garden and Permaculture Design: Spiral garden; Spiral plowing

Patterns of Flow

Shape: Meander, Waves, Ripples Purpose or Function: movement, circulation, transportation, uniform expenditure of energy Examples in Nature: streams, rivers, glaciers, sand dunes, moray eel, snake

Associated Terms: laminar flow, vortices, turbulence,


Shape: Fibonacci angle or ideal angle Purpose or Function: **Phyllotaxis** Distributes leaves to provide maximum exposure to sunlight with minimum overlapping of leaves. Examples in Nature: Phyllotaxis, which is the distribution or arrangement of leaves or buds on a stem, or seeds in a flowerhead. **Associated Mathematical Terms:** Fibonacci angle = 137.5°; Divergency constant, approximately .3819 = 137.5/ 360, defined as (t/n), where t = thenumber of turns around a stem or axis, and n =the number of leaves; e.g. 1/2, 1/

elliptical intervals, lobes. Examples in Garden and Permaculture Design: edge effect, crenelated edge of pond, lobular pathways and gardens. Shape: Streamlines, Overbeck jet

3, 2/5, 3/8, 5/13, 8/21. Notice the

Fibonacci numbers recurring in the ratio Fn/Fn+2.

Examples in Garden and Permaculture Design: spiral garden

permanent forest edges, windrows, and hedgerows.

Patterns of Branching

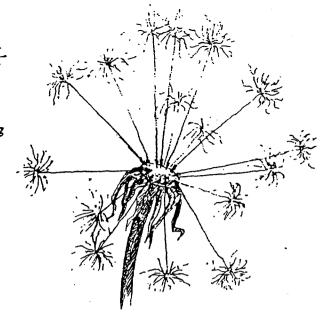
Shapes: Forks, bilateral nmetry, explosion and double

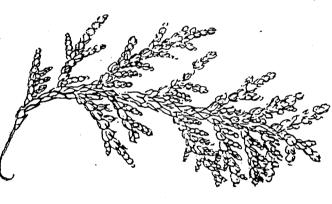
pose or Function:

collection and distribution of nutrients or physical properties, such as energy. Diffusion and

infusion of materials and heat. The most efficient way to reach all points in a large area while moving the shortest possible distance (less weight and stress). Multiple branches help to preserve information, and permit regrowth in case of damage. A common pattern for small flowerheads—yielding a dense

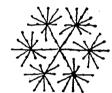
Forks

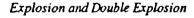

array of florets to attract insects; or barbs for protection, or for seed dispersal. Examples in Nature:


Forks: Trees, roots, leaves, antiers, feathers, blood vessels, river systems

Bilateral symmetry: Bilateral Symmetry evergreens, ferns, leaf veins

Explosion and double explosion: seed pods, clover blossoms, Queen Anne's lace, wild parsnip, goatsbeard, other umbel flowers.


Examples in Garden and Permaculture Design: garden pathways; heat exchange.



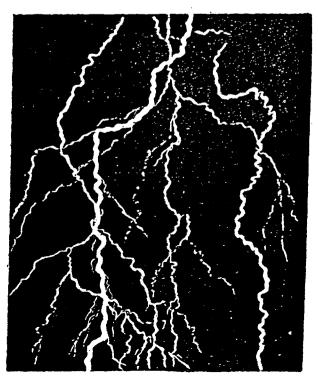
Shape: Fractals. Scatter patterns Purpose or Function: Self similarityrepeated duplication of shape on smaller scales (iteration): detail looks like larger picture. irregular complex structures. Examples in Nature: rocky coastlines, ferns. lichens, tree branches, roots, clouds, frost crystals, snowflakes, fault lines, lightning. neuronal nets. information nets Associated **Mathematical** Terms: fractal geometry, nonlinear equations, chaos dynamics Examples in Garden and Permaculture Design: pathways, networks, clusters

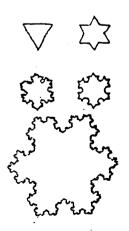
References

Briggs, John. Fractals: the Patterns of Chaos. New York: Simon & Schuster, 1992.

Goodwin, Neil, dir. The Shape of Things. Universal Studios: NOVA Video, 1985.

Mollison, Bill. Permaculture: A Designer's Manual. Tyalgum, NSW: Tagari Press, 1988. Murphy, Pat & Neill, Wm. By Nature's Design. San Francisco, CA: Chronicle Books, 1993. Newman, Rochelle & Boles, Martha. Patterns.


Boston: Pythagorean Press, 1992.


Stevens, Peter. Patterns in Nature. Boston:

Atlantic Monthly Press, 1974.

Thompson, D'Arcy. On Growth and Form. New York: Cambridge University Press, 1961.

Marian Farrior works for The Biodiversity Project, 714 North Henry Street, Suite 203, Madison, WI 703. She would be like to hear from readers out how they experience patterns in nature, pecially how these are applied in permaculture designs. E-mail her at mfarrior@cgbd.org.

Fractal: iteration